Quantum Kerr-de Sitter black holes in three dimensions

Author:

Panella Emanuele,Svesko Andrew

Abstract

Abstract We use braneworld holography to construct a three-dimensional quantum-corrected Kerr-de Sitter black hole, exactly accounting for semi-classical backreaction effects due to a holographic conformal field theory. By contrast, classically there are no de Sitter black holes in three-dimensions, only geometries with a single cosmological horizon. The quantum Kerr black hole shares many qualitative features with the classical four-dimensional Kerr-de Sitter solution. Of note, backreaction induces inner and outer black hole horizons which hide a ring singularity. Moreover, the quantum-corrected geometry has extremal, Nariai, and ultracold limits, which appear as fibered products of a circle and two-dimensional anti-de Sitter, de Sitter, and Minkowski space, respectively. The thermodynamics of the classical bulk black hole, described by the rotating four-dimensional anti-de Sitter C-metric, has an interpretation on the brane as thermodynamics of the quantum black hole, obeying a semi-classical first law where the Bekenstein-Hawking area entropy is replaced by the generalized entropy. For purposes of comparison, we derive the renormalized quantum stress-tensor due to a free conformally coupled scalar field in the classical Kerr-de Sitter conical geometry and perturbatively solve for its backreaction.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Three-Dimensional Quantum Black Holes: A Primer;Universe;2024-09-06

2. Quantum charged black holes;Journal of High Energy Physics;2024-08-22

3. Chemical potential and charge in quantum black holes;Journal of High Energy Physics;2024-08-20

4. Quantum backreactions in (A)dS3 massive gravity and logarithmic asymptotic behavior;Physical Review D;2024-08-06

5. Weak cosmic censorship and the rotating quantum BTZ black hole;Journal of High Energy Physics;2024-07-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3