Revisiting Vh(→ $$ b\overline{b} $$) at the LHC and FCC-hh

Author:

Bishara FadyORCID,Englert PhilippORCID,Grojean ChristopheORCID,Panico Giuliano,Rossia Alejo N.ORCID

Abstract

Abstract Diboson production processes provide good targets for precision measurements at present and future hadron colliders. We consider Vh production, focusing on the h$$ b\overline{b} $$ b b ¯ decay channel, whose sizeable cross section makes it accessible at the LHC. We perform an improved analysis by combining the 0-, 1- and 2-lepton channels with a scale-invariant b-tagging algorithm that allows us to exploit events with either a boosted Higgs via mass-drop tagging or resolved b-jets. This strategy gives sensitivity to 4 dimension-6 SMEFT operators that modify the W and Z couplings to quarks and is competitive with the bounds obtained from global fits. The benefit of the h$$ b\overline{b} $$ b b ¯ decay channel is the fact that it is the only Vh channel accessible at the LHC Run 3 and HL-LHC, while at FCC-hh it is competitive with the effectively background-free hγγ channel assuming ≲ 5% systematic uncertainty. Combining the boosted and resolved categories yields a 17% improvement on the most strongly bounded Wilson coefficient at the LHC Run 3 with respect to the boosted category alone (and a 7% improvement at FCC-hh). We also show that, at FCC-hh, a binning in the rapidity of the Vh system can significantly reduce correlations between some EFT operators. The bounds we obtain translate to a lower bound on the new physics scale of 5, 8, and 20 TeV at the LHC Run 3, HL-LHC, and FCC-hh respectively, assuming new-physics couplings of order unity. Finally, we assess the impact of the Vh production channel on anomalous triple gauge coupling measurements, comparing with their determination at lepton colliders.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. SMEFT at NNLO+PS: Vh production;Journal of High Energy Physics;2024-01-31

2. Diboson production in the SMEFT from gluon fusion;Journal of High Energy Physics;2023-11-21

3. Anomalous triple gauge couplings in electroweak dilepton tails at the LHC and interference resurrection;Journal of High Energy Physics;2023-08-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3