Pseudoscalar pole light-by-light contributions to the muon (g − 2) in resonance chiral theory

Author:

Guevara A.ORCID,Roig P.,Sanz-Cillero J. J.

Abstract

Abstract We have studied the Pγ γ transition form-factors (P = π0 , η, η ) within a chiral invariant framework that allows us to relate the three form-factors and evaluate the corresponding contributions to the muon anomalous magnetic moment a μ = (g μ −2)/2, through pseudoscalar pole contributions. We use a chiral invariant Lagrangian to describe the interactions between the pseudo-Goldstones from the spontaneous chiral symmetry breaking and the massive meson resonances. We will consider just the lightest vector and pseudoscalar resonance multiplets. Photon interactions and U(3) flavor breaking effects are accounted for in this covariant framework. This article studies the most general corrections of order m P 2 within this setting. Requiring short-distance constraints fixes most of the parameters entering the form-factors, consistent with previous determinations. The remaining ones are obtained from a fit of these form-factors to experimental measurements in the space-like (q 2 ≤ 0) region of photon momenta. No time-like observable is included in our fits. The combination of data, chiral symmetry relations between form-factors and high-energy constraints allows us to determine with improved precision the on-shell P -pole contribution to the Hadronic Light-by-Light scattering of the muon anomalous magnetic moment: we obtain $$ {a}_{\mu}^{{}^{P, HLbL}}=\left(8.47 \pm 0.16\right)\ \cdotp\ {10}^{-10} $$ a μ P , HLbL = 8.47 ± 0.16 · 10 10 for our best fit. This result was obtained excluding BaBar π 0 data, which our analysis finds in conflict with the remaining experimental inputs. This study also allows us to determine the parameters describing the ηη system in the two-mixing angle scheme and their correlations. Finally, a preliminary rough estimate of the impact of loop corrections (1/N C ) and higher vector multiplets (asym) enlarges the uncertainty up to $$ {a}_{\mu}^{P, HLbL}=\left(8.47\pm {0.16}_{\mathrm{sta}} \pm {0.09}_{1/{\mathrm{N}}_{\mathrm{C}}}{{}_{-0}^{+0.5}}_{asym}\right)\cdotp {10}^{-10} $$ a μ P , HLbL = 8.47 ± 0.16 s t a ± 0.09 1 / N C 0 + 0.5 asym · 10 10 .

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3