Abstract
Abstract
The simple analytic structure of meson scattering amplitudes in the large-Nc limit, combined with positivity of the spectral density, provides precise predictions on low-energy observables. Building upon previous studies, we explore the allowed regions of chiral Lagrangian parameters and meson couplings to pions. We reveal a structure of kinks at all orders in the chiral expansion and develop analytical tools to show that kinks always correspond to amplitudes with a single light pole. We build (scalar- and vector-less) deformations of the Lovelace-Shapiro and Coon UV-complete amplitudes, and show that they lie close to the boundaries. Moreover, constraints from crossing-symmetry imply that meson couplings to pions become smaller as their spin increases, providing an explanation for the success of Vector Meson Dominance and holographic QCD. We study how these conclusions depend on assumptions about the high-energy behavior of amplitudes. Finally, we emphasize the complementarity between our results and Lattice computations in the exploration of large-Nc QCD.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献