Holographic QCD3 and Chern-Simons theory from anisotropic supergravity

Author:

Li Si-wenORCID,Luo Sen-kai,Hu Ya-qian

Abstract

Abstract Based on the gauge-gravity duality, we study the three-dimensional QCD (QCD3) and Chern-Simons theory by constructing the anisotropic black D3-brane solution in IIB supergravity. The deformed bulk geometry is obtained by performing a double Wick rotation and dimension reduction which becomes an anisotropic bubble configuration exhibiting confinement in the dual theory. And its anisotropy also reduces to a Chern-Simons term due to the presence of the dissolved D7-branes or the axion field in bulk. Using the bubble geometry, we investigate the ground-state energy density, quark potential, entanglement entropy and the baryon vertex according to the standard methods in the AdS/CFT dictionary. Our calculation shows that the ground-state energy illustrates degenerate to the Chern-Simons coupling coefficient which is in agreement with the properties of the gauge Chern-Simons theory. The behavior of the quark tension, entanglement entropy and the embedding of the baryon vertex further implies strong anisotropy may destroy the confinement. Afterwards, we additionally introduce various D7-branes as flavor and Chern-Simons branes to include the fundamental matter and effective Chern-Simons level in the dual theory. By counting their orientation, we finally obtain the associated topological phase in the dual theory and the critical mass for the phase transition. Interestingly the formula of the critical mass reveals the flavor symmetry, which may relate to the chiral symmetry, would be restored if the anisotropy increases greatly. As all of the analysis is consistent with characteristics of quark-gluon plasma, we therefore believe our framework provides a remarkable way to understand the features of Chern-Simons theory, the strong coupled nuclear matter and its deconfinement condition with anisotropy.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3