Post-inflationary leptogenesis and dark matter production: metric versus Palatini formalism

Author:

Ghoshal AnishORCID,Lalak ZygmuntORCID,Pal SupratikORCID,Porey ShiladityaORCID

Abstract

Abstract We investigate production of non-thermal dark matter particles and heavy sterile neutrinos from inflaton during the reheating era, which is preceded by a slow-roll inflationary epoch with a quartic potential and non-minimal coupling (ξ) between inflaton and gravity. We compare our analysis between metric and Palatini formalism. For the latter, the tensor-to-scalar ratio, r, decreases with ξ. We find that for ξ = 0.5 and number of e-folds ~ 60, r can be as small as ~ $$ \mathcal{O} $$ O (103) which may be validated at future reaches of upcoming CMB observation such as CMB-S4 etc. We identify the permissible range of Yukawa coupling yχ between inflaton and fermionic DM χ, to be $$ \mathcal{O} $$ O (103.5) ≳ yχ$$ \mathcal{O} $$ O (1020) for metric formalism and $$ \mathcal{O} $$ O (10−4) ≳ yχ$$ \mathcal{O} $$ O (1011) for Palatini formalism which is consistent with current PLANCK data and also within the reach of future CMB experiments. For the scenario of leptogenesis via the decay of sterile neutrinos produced from inflaton decay, we also investigate the parameter space involving heavy neutrino mass MN1 and Yukawa coupling yN1 of sterile neutrino with inflaton, which are consistent with current CMB data and successful generation of the observed baryon asymmetry of the universe via leptogenesis. In contrast to metric formalism, in the case of Palatini formalism, for successful leptogenesis to occur, we find that yN1 has a very narrow allowable range and is severely constrained from the consistency with CMB predictions.

Publisher

Springer Science and Business Media LLC

Reference116 articles.

1. C. Bambi and A.D. Dolgov, Introduction to Particle Cosmology, in UNITEXT for Physics, Springer (2015) [https://doi.org/10.1007/978-3-662-48078-6] [INSPIRE].

2. Planck collaboration, Planck 2018 results. Part VI. Cosmological parameters, Astron. Astrophys. 641 (2020) A6 [Erratum ibid. 652 (2021) C4] [arXiv:1807.06209] [INSPIRE].

3. Particle Data collaboration, Review of Particle Physics, Prog. Theor. Exp. Phys. 2020 (2020) 083C01 [INSPIRE].

4. B.D. Fields, K.A. Olive, T.-H. Yeh and C. Young, Big-Bang Nucleosynthesis after Planck, JCAP 03 (2020) 010 [Erratum ibid. 11 (2020) E02] [arXiv:1912.01132] [INSPIRE].

5. G. Steigman, When Clusters Collide: Constraints On Antimatter On The Largest Scales, JCAP 10 (2008) 001 [arXiv:0808.1122] [INSPIRE].

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Higgs Inflation in Unimodular Gravity;Progress of Theoretical and Experimental Physics;2024-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3