Abstract
Abstract
For ensembles of Hamiltonians that fall under the Dyson classification of random matrices with β ∈ {1, 2, 4}, the low-temperature mean entropy can be shown to vanish as 〈S(T)〉 ∼ κTβ + 1. A similar relation holds for Altland-Zirnbauer ensembles. JT gravity has been shown to be dual to the double-scaling limit of a β = 2 ensemble, with a classical eigenvalue density $$ \propto {e}^{S_0}\sqrt{E} $$
∝
e
S
0
E
when 0 < E ≪ 1. We use universal results about the distribution of the smallest eigenvalues in such ensembles to calculate κ up to corrections that we argue are doubly exponentially small in S0.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Reference31 articles.
1. S. F. Edwards and P. W. Anderson, Theory of spin glasses, J. Phys. F 5 (1975) 965.
2. N. Engelhardt, S. Fischetti and A. Maloney, Free energy from replica wormholes, Phys. Rev. D 103 (2021) 046021 [arXiv:2007.07444] [INSPIRE].
3. R. Jackiw, Lower Dimensional Gravity, Nucl. Phys. B 252 (1985) 343 [INSPIRE].
4. C. Teitelboim, Gravitation and Hamiltonian Structure in Two Space-Time Dimensions, Phys. Lett. B 126 (1983) 41 [INSPIRE].
5. P. Saad, S. H. Shenker and D. Stanford, JT gravity as a matrix integral, arXiv:1903.11115 [INSPIRE].
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献