New Well-Posed boundary conditions for semi-classical Euclidean gravity

Author:

Liu Xiaoyi,Santos Jorge E.,Wiseman Toby

Abstract

Abstract We consider four-dimensional Euclidean gravity in a finite cavity. Dirichlet conditions do not yield a well-posed elliptic system, and Anderson has suggested boundary conditions that do. Here we point out that there exists a one-parameter family of boundary conditions, parameterized by a constant p, where a suitably Weyl rescaled boundary metric is fixed, and all give a well-posed elliptic system. Anderson and Dirichlet boundary conditions can be seen as the limits p → 0 and ∞ of these. Focussing on static Euclidean solutions, we derive a thermodynamic first law. Restricting to a spherical spatial boundary, the infillings are flat space or the Schwarzschild solution, and have similar thermodynamics to the Dirichlet case. We consider smooth Euclidean fluctuations about the flat space saddle; for p > 1/6 the spectrum of the Lichnerowicz operator is stable — its eigenvalues have positive real part. Thus we may regard large p as a regularization of the ill-posed Dirichlet boundary conditions. However for p < 1/6 there are unstable modes, even in the spherically symmetric and static sector. We then turn to Lorentzian signature. For p < 1/6 we may understand this spherical Euclidean instability as being paired with a Lorentzian instability associated with the dynamics of the boundary itself. However, a mystery emerges when we consider perturbations that break spherical symmetry. Here we find a plethora of dynamically unstable modes even for p > 1/6, contrasting starkly with the Euclidean stability we found. Thus we seemingly obtain a system with stable thermodynamics, but unstable dynamics, calling into question the standard assumption of smoothness that we have implemented when discussing the Euclidean theory.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3