Chiral anomaly in SU(2)R-axion inflation and the new prediction for particle cosmology

Author:

Maleknejad Azadeh

Abstract

Abstract Upon embedding the axion-inflation in the minimal left-right symmetric gauge extension of the SM with gauge group SU(2)L × SU(2)R × U(1)BL, [1] proposed a new particle physics model for inflation. In this work, we present a more detailed analysis. As a compelling consequence, this setup provides a new mechanism for simultaneous baryogenesis and right-handed neutrino creation by the chiral anomaly of WR in inflation. The lightest right-handed neutrino is the dark matter candidate. This setup has two unknown fundamental scales, i.e., the scale of inflation and left-right symmetry breaking SU(2)R × U(1)BL U(1)Y. Sufficient matter creation demands the left-right symmetry breaking scale happens shortly after the end of inflation. Interestingly, it prefers left-right symmetry breaking scales above 1010 GeV, which is in the range suggested by the non-supersymmetric SO(10) Grand Unified Theory with an intermediate left-right symmetry scale. Although WR gauge field generates equal amounts of right-handed baryons and leptons in inflation, i.e. B L = 0, in the Standard Model sub-sector B LSM ≠ 0. A key aspect of this setup is that SU(2)R sphalerons are never in equilibrium, and the primordial B LSM is conserved by the Standard Model interactions. This setup yields a deep connection between CP violation in physics of inflation and matter creation (visible and dark); hence it can naturally explain the observed coincidences among cosmological parameters, i.e., ηB ≃ 0.3Pζ and ΩDM ≃ 5ΩB. The new mechanism does not rely on the largeness of the unconstrained CP-violating phases in the neutrino sector nor fine-tuned masses for the heaviest right-handed neutrinos. The SU(2)R-axion inflation comes with a cosmological smoking gun; chiral, non-Gaussian, and blue-tilted gravitational wave background, which can be probed by future CMB missions and laser interferometer detectors.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On sphaleron heating in the presence of fermions;Journal of Cosmology and Astroparticle Physics;2024-06-01

2. The inflated Chern-Simons number in spectator chromo-natural inflation;Journal of High Energy Physics;2023-01-18

3. Production and backreaction of massive fermions during axion inflation with non-Abelian gauge fields;Journal of Cosmology and Astroparticle Physics;2022-09-01

4. Axion anomalies;Journal of High Energy Physics;2022-08-04

5. New constraints on axion-gauge field dynamics during inflation from Planck and BICEP/Keck data sets;Journal of Cosmology and Astroparticle Physics;2022-07-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3