The analytic structure of the fixed charge expansion

Author:

Antipin Oleg,Bersini JahmallORCID,Sannino Francesco,Torres MatíasORCID

Abstract

Abstract We investigate the analytic properties of the fixed charge expansion for a number of conformal field theories in different space-time dimensions. The models investigated here are O(N) and QED3. We show that in d = 3 − ϵ dimensions the contribution to the O(N) fixed charge Q conformal dimensions obtained in the double scaling limit of large charge and vanishing ϵ is non-Borel summable, doubly factorial divergent, and with order $$ \sqrt{Q} $$ Q optimal truncation order. By using resurgence techniques we show that the singularities in the Borel plane are related to worldline instantons that were discovered in the other double scaling limit of large Q and N of ref. [1]. In d = 4 − ϵ dimensions the story changes since in the same large Q and small E regime the next order corrections to the scaling dimensions lead to a convergent series. The resummed series displays a new branch cut singularity which is relevant for the stability of the O(N) large charge sector for negative ϵ. Although the QED3 model shares the same large charge behaviour of the O(N) model, we discover that at leading order in the large number of matter field expansion the large charge scaling dimensions are Borel summable, single factorial divergent, and with order Q optimal truncation order.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Infinite order results for charged sectors of the Standard Model;Journal of High Energy Physics;2024-02-22

2. Large charge ’t Hooft limit of $$ \mathcal{N} $$ = 4 super-Yang-Mills;Journal of High Energy Physics;2024-02-08

3. Stability analysis of a non-unitary CFT;Journal of High Energy Physics;2023-11-08

4. Identifying Large Charge operators;Journal of High Energy Physics;2023-02-13

5. Yukawa interactions at large charge;Journal of High Energy Physics;2022-10-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3