Potential Use of Data-Driven Models to Estimate and Predict Soybean Yields at National Scale in Brazil
Author:
Funder
Fundação de Amparo à Pesquisa do Estado de São Paulo
Publisher
Springer Science and Business Media LLC
Subject
Plant Science,Agronomy and Crop Science
Link
https://link.springer.com/content/pdf/10.1007/s42106-022-00209-0.pdf
Reference57 articles.
1. Battisti, R., & Sentelhas, P. C. (2015). Drought tolerance of brazilian soybean cultivars simulated by a simple agrometeorological yield model. Experimental Agriculture, 51, 285–298. https://doi.org/10.1017/S0014479714000283
2. Battisti, R., Sentelhas, P. C., & Boote, K. J. (2017). Inter-comparison of performance of soybean crop simulation models and their ensemble in southern Brazil. Field Crops Research, 200, 28–37. https://doi.org/10.1016/j.fcr.2016.10.004
3. Battisti, R., Sentelhas, P. C., Pascoalino, J. A. L., Sako, H., de Sá Dantas, J. P., & Moraes, M. F. (2018). Soybean yield gap in the areas of yield contest in Brazil. International Journal of Plant Production, 12, 159–168. https://doi.org/10.1007/s42106-018-0016-0
4. Breiman, L. (2001). Random forests. Machine Learning, 45, 5–32.
5. Carauta, M., Libera, A.A.D., Hampf, A., Chen, R.F.F., Silveira, J.M.F.J., Berger, T. (2017). On-farm trade-offs for optimal agricultural practices in Mato Grosso, Brazil. Revista de Economia e Agronegócio. https://doi.org/10.25070/rea.v15i3.505
Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Environmental engineering solutions for efficient soil classification in southern Syria: a clustering-correlation extreme learning approach;International Journal of Environmental Science and Technology;2024-06-14
2. Towards a Better Understanding of Rainfed Wheat Yield Predictions in Arid and Semi-Arid Regions: How Early, Precise, and Transferable Can These Models Be?;2024
3. Towards a Framework for Monitoring Crop Productivity in Agroforestry Parklands of the Sudano-Sahel Using Sentinel-1 and 2 Time Series;2024
4. Towards a Framework for Monitoring Crop Productivity in Agroforestry Parklands of the Sudano-Sahel Using Sentinel-1 and 2 Time Series;2024
5. Machine learning for soybean yield forecasting in Brazil;Agricultural and Forest Meteorology;2023-10
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3