The effect of sampling effort and methodology on range size estimates of poorly-recorded species for IUCN Red List assessments

Author:

Marsh Charles J.ORCID,Syfert Mindy M.,Aletrari Elina,Gavish YoniORCID,Kunin William E.,Brummitt Neil

Abstract

AbstractGeographic range size is the most commonly implemented criterion of species’ extinction risk used in IUCN Red List assessments, especially for poorly-recorded species. IUCN applies two contrasting range size measures to capture different facets of a species’ distribution: Extent of Occurrence (EOO; Criterion B1) is the area bounding all known occurrences and is a proxy for the spatial autocorrelation of risk, while the Area of Occupancy (AOO; Criterion B2) is the area occupied within this boundary and is related to population size at finer grains. Various methods have been proposed to measure both EOO and AOO. We evaluate the impact of applying four methods for each of Criterion B1 and of B2, as well as key parameter choices, on the Red List status of 227 poorly-recorded neotropical pteridophyte species. Between 2 and 100% of species would be considered threatened depending on methodology. The minimum convex polygon method of estimating EOO was relatively robust to sampling effort for all but the least-recorded species. The IUCN-recommended method for estimating AOO of summing occupied 2 × 2 km grid cells was very strongly correlated with the total number of records. It is likely that only a small fraction of species can be adequately assessed using this method, and we recommend caution applying the method to poorly-recorded species in particular, where models predicting occupancy in unsampled areas (e.g. species distribution models) may provide more accurate assessments. It is vital that methodological information is retained with assessments, and comparisons should only be made between assessments utilising equivalent methods.

Funder

FP7 Environment

Publisher

Springer Science and Business Media LLC

Subject

Nature and Landscape Conservation,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3