Biodiversity associated with restored small-scale mussel habitats has restoration decision implications

Author:

Benjamin Emilee D.ORCID,Handley Sean J.,Hale Rachel,Toone Trevyn A.,Jeffs Andrew,Hillman Jenny R.

Abstract

AbstractThe global loss of marine ecosystem engineers has caused an unprecedented decline in biodiversity. Although wild shellfish habitats have been shown to support biodiverse ecosystems, little is known about how biodiversity is altered by restored shellfish habitats, particularly mussels. To explore the biodiversity response to restored mussel habitats we deposited mussels on the seafloor in 1.5 × 1.5 m plots across a gradient of benthic environments. To understand a holistic community response, this study looks at the response of three faunal classifications over 1 year: infauna, epifauna, and pelagic fauna, compared with adjacent control plots (no mussels). The restored mussel habitats recorded 42 times more demersal fish than control areas, while macroalgae and mobile benthic invertebrates had over a twofold increase in abundance. Overall, the addition of mussels to the seafloor resulted in a general reduction of infaunal abundance and biodiversity, but an increase in epifaunal and pelagic faunal abundances, specifically from those species that benefit from benthic habitat complexity and an increase in food availability. From a management perspective, we highlight location-specific differences to consider for future restoration efforts, including environmental conditions and potential observed factors such as nearby sources of species, particularly predators, and relevant demersal fish ranges. Ultimately, measuring biodiversity responses in small-scale studies will serve as a valuable guide for larger scale restoration efforts and this study recommends considerations to enhance biodiversity outcomes in restored mussel habitats.

Funder

Ministry for Primary Industries

University of Auckland

Publisher

Springer Science and Business Media LLC

Subject

Nature and Landscape Conservation,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3