Assessing the storage potential of Australian rainforest seeds: a decision-making key to aid rapid conservation

Author:

Sommerville K. D.ORCID,Errington G.,Newby Z-J.,Liyanage G. S.,Offord C. A.

Abstract

AbstractSeed banking of rainforest species is hindered by lack of knowledge as to which species are tolerant of desiccation and freezing. We assessed 313 Australian rainforest species for seed banking suitability by comparing the germination percentage of fresh seeds to seeds dried at 15% RH and seeds stored at −20 °C after drying. We then compared desiccation responses to environmental, habit, fruit and seed characteristics to identify the most useful predictors of desiccation sensitivity. Of 162 species with ≥ 50% initial germination, 22% were sensitive to desiccation, 64% were tolerant and 10% were partially tolerant; the responses of 4% were uncertain. Of 107 desiccation tolerant species tested for response to freezing, 24% were freezing sensitive or short-lived in storage at −20 °C. Median values for fresh seed moisture content (SMC), oven dry weight (DW) and the likelihood of desiccation sensitivity (PD-S) were significantly greater for desiccation sensitive than desiccation tolerant seeds. Ninety-four to 97% of seeds with SMC < 29%, DW < 20 mg or PD-S < 0.01 were desiccation tolerant. Ordinal logistic regression of desiccation response against environmental, habit, fruit and seed characteristics indicated that the likelihood of desiccation sensitivity was significantly increased by a tree habit, fleshy fruit, increasing fresh SMC and increasing PD-S. The responses observed in this study were combined with earlier studies to develop a simple decision key to aid prediction of desiccation responses in untested rainforest species.

Funder

the maxwell foundation

Arcadia Fund

The Greatorex Foundation

HSBC Bank

Publisher

Springer Science and Business Media LLC

Subject

Nature and Landscape Conservation,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3