Updating knowledge of vegetation belts on a complex oceanic island after 20 years under the effect of climate change

Author:

García-Alvarado Juan José,Bello-Rodríguez Víctor,González-Mancebo Juana María,Del Arco Marcelino José

Abstract

AbstractClimate change is causing major changes in terrestrial ecosystems and biomes around the world. This is particularly concerning in oceanic islands, considered reservoirs of biodiversity, even more in those with a significant altitudinal gradient and high complexity in the vegetation they potentially harbour. Here, in Tenerife (Canary Islands), we have evaluated the changes in potential vegetation belts during the last 20 years by comparing them with a previous study. Considering the intimate linkage between vegetation and climate, we used a methodology based on phytosociological knowledge, ordination techniques and geostatistics, using multivariate spatial interpolations of bioclimatic data. This has allowed us to spatially detect the variations experienced by eight vegetation units during the last 20 years and incorporating a set of vulnerability metrics. New bioclimatic and vegetation cartography are provided according to the current scenario studied (1990–2019). Our results indicate that summit vegetation, humid laurel forest and thermo-sclerophyllous woodland are the habitats that have experienced a very high area loss and mismatch index, strong changes, if we consider that we are only comparing a period of 20 years. Simultaneously, the more xeric vegetation belts, the dry laurel forest and the pine forest would have benefited from this new warmer and drier climate, by gaining area and experiencing strong upward movements. These changes have not been spatially uniform, indicating that the elevational gradient studied not explain completely our results, showing the influence of the complex island topography. Effective landscape management should consider current remnants, transition capacity and movement limitations to better understand current and future vegetation responses in a global change context.

Funder

Universidad de la Laguna

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3