Effect of non-native species on taxonomic and functional diversity of fish communities in different river types

Author:

Takács PéterORCID,Abonyi András,Bánó Bálint,Erős Tibor

Abstract

AbstractRecent researches suggest that functional diversity represents the response of communities to environmental alterations better than taxonomic diversity. However, there is scarce information about how the functional diversity of freshwater fishes is affected by habitat type and the dominance of non-native species. To address this question, we analysed a large database containing 15 morpho-functional traits of 61 fish species from the Pannon Biogeographic region (Hungary). Based on a fish faunistic list and relative abundance of taxa, we quantified the taxonomic and functional diversity of riverine communities for > 700 sites of six habitat types. We asked how non-native fishes affected the taxonomic and functional diversity in different river types and at the local scale (i.e. at the site level), and how the diversity measures of native fauna elements changes along the invasion gradient. Our results showed that both functional and taxonomic richness increases with habitat complexity, from small headwater streams to large rivers. Therefore taxonomic diversity served as a good proxy for functional diversity along the environmental gradient of river types. Non-natives showed considerable functional diversity relative to their species number in each habitat type. Diversity values of native fauna elements initially increased, and then showed a major decrease along the invasion gradient. River type-specific evaluations highlighted the importance of considering the proliferation of invasive species based on both taxonomic and functional diversity indices. We argue that type-specific action plans are needed in conservation management to preserve the taxonomic and functional diversity of native fishes in Hungary, but also elsewhere.

Funder

NKFIH

GINOP

Bolyai Fellowship of the Hungarian Academy of Sciences

ELKH Centre for Ecological Research

Publisher

Springer Science and Business Media LLC

Subject

Nature and Landscape Conservation,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3