Diversifying modelling techniques to disentangle the complex patterns of species richness and diversity in the protected afromontane grasslands

Author:

Mashiane Katlego K.,Ramoelo Abel,Adelabu Samuel

Abstract

AbstractEcological research has focused on the importance of environmental factors on spatial biodiversity variations and organisation. This is important because of scant conservation resources. We used stepwise backward selection and random feature selection (RFE) to identify a parsimonious model that can predict species richness and diversity metrics in response to three models; biotic, abiotic, and topo-edaphic. Our results show that both metrics are good predictors of one another, mainly because species diversity is a combination of species richness and abundance, and further highlights the importance of biotic variables in predicting species distribution. The two modelling techniques selected soil texture and its interactions with topographic variables as the most important variables. However, random forest performed worse than multiple linear regression in the prediction of diversity metrics. This research highlights the importance of topographically controlled edaphic factors as drivers of species richness and diversity in mountainous grasslands where topography inherently controls the geomorphic, hydrological, and, as a result, ecological processes.

Funder

University of the Free State

Publisher

Springer Science and Business Media LLC

Subject

Nature and Landscape Conservation,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3