The impacts of biofuel crops on local biodiversity: a global synthesis

Author:

Tudge Sophie JaneORCID,Purvis AndyORCID,De Palma AdrianaORCID

Abstract

AbstractConcerns about the impacts of climate change have led to increased targets for biofuel in the global energy market. First-generation biofuel crops contain oil, sugar or starch and are usually also grown for food, whereas second-generation biofuel is derived from non-food sources, including lignocellulosic crops, fast-growing trees, crop residues and waste. Biofuel production drives land-use change, a major cause of biodiversity loss, but there is limited knowledge of how different biofuel crops affect local biodiversity. Therefore, a more detailed understanding could inform more environmentally-conscious decisions about where to grow which biofuel crops. We synthesised data from 116 sources where a potential biofuel crop was grown and estimated how two measures of local biodiversity, species richness and total abundance, responded to different crops. Local species richness and abundance were 37% and 49% lower at sites planted with first-generation biofuel crops than in sites with primary vegetation. Soybean, wheat, maize and oil palm had the worst effects; the worst affected regions were Asia and Central and South America; and plant species richness and vertebrate abundance were the worst affected biodiversity measures. Second-generation biofuels had smaller, but still significant, effects: species richness and abundance were 19% and 25%, respectively, lower in such sites than in primary vegetation. Our models suggest that land clearance to cultivate biofuel crops reduces local biodiversity. However, the yield of biofuel from different crops influences the biodiversity impacts per unit of energy generated, and the geographic and taxonomic variation in effects are also relevant for making sustainable land-use decisions.

Funder

Natural Environment Research Council

Prince Albert II of Monaco Foundation

Publisher

Springer Science and Business Media LLC

Subject

Nature and Landscape Conservation,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3