Bandpass Shape of Distortion-Product Otoacoustic Emission Ratio Functions Reflects Cochlear Frequency Tuning in Normal-Hearing Mice

Author:

Dewey James B.ORCID,Shera Christopher A.ORCID

Abstract

AbstractThe frequency selectivity of the mammalian auditory system is critical for discriminating complex sounds like speech. This selectivity derives from the sharp tuning of the cochlea’s mechanical response to sound, which is largely attributed to the amplification of cochlear vibrations by outer hair cells (OHCs). Due to its nonlinearity, the amplification process also leads to the generation of distortion products (DPs), some of which propagate out to the ear canal as DP otoacoustic emissions (DPOAEs). However, the insight that these signals provide about the tuned micro- and macro-mechanics underlying their generation remains unclear. Using optical coherence tomography to measure cochlear vibrations in mice, we show that the cochlea’s frequency tuning is reflected in the bandpass shape that is observed in DPOAE amplitudes when the ratio of the two evoking stimulus frequencies is varied (here termed DPOAE “ratio functions”). The tuning sharpness of DPOAE ratio functions and cochlear vibrations co-varied with stimulus level, with a similar quantitative agreement in tuning sharpness observed for both apical and mid-cochlear locations. Measurement of intracochlear DPs revealed that the tuning of the DPOAE ratio functions was not caused by mechanisms that shape DPs locally near where they are generated. Instead, simple model simulations indicate that the bandpass shape is due to a more global wave interference phenomenon. It appears that the filtering of DPOAEs by wave interactions over an extended spatial region allows them to provide a window onto the frequency tuning of single cochlear locations.

Funder

Hearing Health Foundation

National Institute on Deafness and Other Communication Disorders

University of Southern California

Publisher

Springer Science and Business Media LLC

Subject

Sensory Systems,Otorhinolaryngology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3