Optimal Scale-Invariant Wavelet Representation and Filtering of Human Otoacoustic Emissions

Author:

Moleti ArturoORCID

Abstract

AbstractOtoacoustic emissions (OAEs) are generated in the cochlea and recorded in the ear canal either as a time domain waveform or as a collection of complex responses to tones in the frequency domain (Probst et al. J Account Soc Am 89:2027–2067, 1991). They are typically represented either in their original acquisition domain or in its Fourier-conjugated domain. Round-trip excursions to the conjugated domain are often used to perform filtering operations in the computationally simplest way, exploiting the convolution theorem. OAE signals consist of the superposition of backward waves generated in different cochlear regions by different generation mechanisms, over a wide frequency range. The cochlear scaling symmetry (cochlear physics is the same at all frequency scales), which approximately holds in the human cochlea, leaves its fingerprints in the mathematical properties of OAE signals. According to a generally accepted taxonomy (Sher and Guinan Jr, J Acoust Soc Am 105:782–798, 1999), OAEs are generated either by wave-fixed sources, moving with frequency according with the cochlear scaling (as in nonlinear distortion) or by place-fixed sources (as in coherent reflection by roughness). If scaling symmetry holds, the two generation mechanisms yield OAEs with different phase gradient delay: almost null for wave-fixed sources, and long (and scaling as 1/f) for place-fixed sources. Thus, the most effective representation of OAE signals is often that respecting the cochlear scale-invariance, such as the time-frequency domain representation provided by the wavelet transform. In the time-frequency domain, the elaborate spectra or waveforms yielded by the superposition of OAE components from different generation mechanisms assume a much clearer 2-D pattern, with each component localized in a specific and predictable region. The wavelet representation of OAE signals is optimal both for visualization purposes and for designing filters that effectively separate different OAE components, improving both the specificity and the sensitivity of OAE-based applications. Indeed, different OAE components have different physiological meanings, and filtering dramatically improves the signal-to-noise ratio.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3