Abstract
AbstractThe effect of the relative timing between pairs of same-polarity monophasic pulses has been studied extensively in single-neuron animal studies and has revealed fundamental properties of the neurons. For human cochlear implant listeners, the requirement to use charge-balanced stimulation and the typical use of symmetric, biphasic pulses limits such measures, because currents of opposite polarities interact at the level of the neural membrane. Here, we propose a paradigm to study same-polarity summation of currents while keeping the stimulation charge-balanced within a short time window. We used pairs of mirrored pseudo-monophasic pulses (a long-low phase followed by a short-high phase for the first pulse and a short-high phase followed by a long-low phase for the second pulse). We assumed that most of the excitation would stem from the two adjacent short-high phases, which had the same polarity. The inter-pulse interval between the short-high phases was varied from 0 to 345 μs. The inter-pulse interval had a significant effect on the perceived loudness, and this effect was consistent with both passive (membrane-related) and active (ion-channel-related) neuronal mechanisms contributing to facilitation. Furthermore, the effect of interval interacted with the polarity of the pulse pairs. At threshold, there was an effect of polarity, but, surprisingly, no effect of interval nor an interaction between the two factors. We discuss possible peripheral origins of these results.
Funder
Danmarks Tekniske Universitet
Publisher
Springer Science and Business Media LLC
Subject
Sensory Systems,Otorhinolaryngology
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献