Electrical and Immunohistochemical Properties of Cochlear Fibrocytes in 3D Cell Culture and in the Excised Spiral Ligament of Mice

Author:

Osborn A.,Caruana D.ORCID,Furness D. N.,Evans M. G.ORCID

Abstract

AbstractFibrocyte degeneration in the cochlear lateral wall is one possible pathology of age-related metabolic hearing loss (presbycusis). Within the lateral wall fibrocytes play a role in potassium recycling and maintenance of the endocochlear potential. It has been proposed that cell replacement therapy could prevent fibrocyte degeneration in the CD/1 mouse model of hearing loss. For this to work, the replacement fibrocytes would need to take over the structural and physiological role of those lost. We have grown lateral wall fibrocytes from neonatal CD/1 mice in a 3D-collagen gel culture with the aim of assessing their functional similarity to native lateral wall fibrocytes, the latter in a slice preparation and in excised spiral ligament pieces. We have compared cultured and native fibrocytes using both immuno-labelling of characteristic proteins and single cell electrophysiology. Cultured fibrocytes exhibited rounded cell bodies with extending processes. They labelled with marker antibodies targeting aquaporin 1 and calcium-binding protein S-100, precluding an unambiguous identification of fibrocyte type. In whole-cell voltage clamp, both native and cultured fibrocytes exhibited non-specific currents and voltage-dependent K+ currents. The non-specific currents from gel-cultured and excised spiral ligament fibrocytes were partially and reversibly blocked by external TEA (10 mM). The TEA-sensitive current had a mean reversal potential of + 26 mV, suggesting a permeability sequence of Na+  > K+. These findings indicate that 3D-cultured fibrocytes share a number of characteristics with native spiral ligament fibrocytes and thus might represent a suitable population for transplantation therapy aimed at treating age-related hearing loss.

Publisher

Springer Science and Business Media LLC

Subject

Sensory Systems,Otorhinolaryngology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3