SVPath: A Deep Learning Tool for Analysis of Stria Vascularis from Histology Slides

Author:

Jain AseemORCID,Perdomo Dianela,Nagururu Nimesh,Li Jintong Alice,Ward Bryan K.,Lauer Amanda M.,Creighton Francis X.

Abstract

Abstract Introduction The stria vascularis (SV) may have a significant role in various otologic pathologies. Currently, researchers manually segment and analyze the stria vascularis to measure structural atrophy. Our group developed a tool, SVPath, that uses deep learning to extract and analyze the stria vascularis and its associated capillary bed from whole temporal bone histopathology slides (TBS). Methods This study used an internal dataset of 203 digitized hematoxylin and eosin-stained sections from a normal macaque ear and a separate external validation set of 10 sections from another normal macaque ear. SVPath employed deep learning methods YOLOv8 and nnUnet to detect and segment the SV features from TBS, respectively. The results from this process were analyzed with the SV Analysis Tool (SVAT) to measure SV capillaries and features related to SV morphology, including width, area, and cell count. Once the model was developed, both YOLOv8 and nnUnet were validated on external and internal datasets. Results YOLOv8 implementation achieved over 90% accuracy for cochlea and SV detection. nnUnet SV segmentation achieved a DICE score of 0.84–0.95; the capillary bed DICE score was 0.75–0.88. SVAT was applied to compare both the ears used in the study. There was no statistical difference in SV width, SV area, and average area of capillary between the two ears. There was a statistical difference between the two ears for the cell count per SV. Conclusion The proposed method accurately and efficiently analyzes the SV from temporal histopathology bone slides, creating a platform for researchers to understand the function of the SV further.

Funder

National Institutes of Health

Johns Hopkins University

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3