Computer Simulation of the Electrical Stimulation of the Human Vestibular System: Effects of the Reactive Component of Impedance on Voltage Waveform and Nerve Selectivity

Author:

D’Alessandro SimoneORCID,Handler Michael,Saba Rami,Garnham Carolyn,Baumgarten Daniel

Abstract

AbstractThe vestibular system is responsible for our sense of balance and spatial orientation. Recent studies have shown the possibility of partially restoring the function of this system using vestibular implants. Electrical modeling is a valuable tool in assisting the development of these implants by analyzing stimulation effects. However, previous modeling approaches of the vestibular system assumed quasi-static conditions. In this work, an extended modeling approach is presented that considers the reactive component of impedance and the electrode-tissue interface and their effects are investigated in a 3D human vestibular computer model. The Fourier finite element method was employed considering the frequency-dependent electrical properties of the different tissues. The electrode-tissue interface was integrated by an instrumental electrode model. A neuron model of myelinated fibers was employed to predict the nerve responses to the electrical stimulus. Morphological changes of the predicted voltage waveforms considering the dielectric tissue properties were found compared to quasi-static simulations, particularly during monopolar electrode configuration. Introducing the polarization capacitance and the scar tissue around the electrode in combination with a power limitation leads to a considerable current reduction applied through the active electrode and, consequently, to reduced voltage amplitudes of the stimulus waveforms. The reactive component of impedance resulted in better selectivity for the excitation of target nerves compared to the quasi-static simulation at the expense of slightly increased stimulus current amplitudes. We conclude that tissue permittivity and effects of the electrode-tissue interface should be considered to improve the accuracy of the simulations.

Funder

European Fund for Regional Development

UMIT TIROL-Private Universität für Gesundheitswissenschaften und -technologie GmbH

Publisher

Springer Science and Business Media LLC

Subject

Sensory Systems,Otorhinolaryngology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3