From pixels to prognosis: Imaging biomarkers for discrimination and outcome prediction of pulmonary embolism

Author:

Gotta JenniferORCID,Gruenewald Leon D.,Martin Simon S.,Booz Christian,Mahmoudi Scherwin,Eichler Katrin,Gruber-Rouh Tatjana,Biciusca Teodora,Reschke Philipp,Juergens Lisa-Joy,Onay Melis,Herrmann Eva,Scholtz Jan-Erik,Sommer Christof M.,Vogl Thomas J.,Koch Vitali

Abstract

Abstract Purpose Recent advancements in medical imaging have transformed diagnostic assessments, offering exciting possibilities for extracting biomarker-based information. This study aims to investigate the capabilities of a machine learning classifier that incorporates dual-energy computed tomography (DECT) radiomics. The primary focus is on discerning and predicting outcomes related to pulmonary embolism (PE). Methods The study included 131 participants who underwent pulmonary artery DECT angiography between January 2015 and March 2022. Among them, 104 patients received the final diagnosis of PE and 27 patients served as a control group. A total of 107 radiomic features were extracted for every case based on DECT imaging. The dataset was divided into training and test sets for model development and validation. Stepwise feature reduction identified the most relevant features, which were used to train a gradient-boosted tree model. Receiver operating characteristics analysis and Cox regression tests assessed the association of texture features with overall survival. Results The trained machine learning classifier achieved a classification accuracy of 0.94 for identifying patients with acute PE with an area under the receiver operating characteristic curve of 0.91. Radiomics features could be valuable for predicting outcomes in patients with PE, demonstrating strong prognostic capabilities in survival prediction (c-index, 0.991 [0.979–1.00], p = 0.0001) with a median follow-up of 130 days (IQR, 38–720). Notably, the inclusion of clinical or DECT parameters did not enhance predictive performance. Conclusion In conclusion, our study underscores the promising potential of leveraging radiomics on DECT imaging for the identification of patients with acute PE and predicting their outcomes. This approach has the potential to improve clinical decision-making and patient management, offering efficiencies in time and resources by utilizing existing DECT imaging without the need for an additional scoring system.

Funder

Johann Wolfgang Goethe-Universität, Frankfurt am Main

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3