Defect Engineering in MBE-Grown CdTe Buffer Layers on GaAs (211)B Substrates
-
Published:2022-06-10
Issue:9
Volume:51
Page:4869-4883
-
ISSN:0361-5235
-
Container-title:Journal of Electronic Materials
-
language:en
-
Short-container-title:J. Electron. Mater.
Author:
Pan W. W.,Gu R. J.,Zhang Z. K.,Lei W.,Umana-Membreno G. A.,Smith D. J.,Antoszewski J.,Faraone L.
Abstract
AbstractDemand for high-performance HgCdTe infrared detectors with larger array size and lower cost has fuelled the heteroepitaxial growth of HgCdTe on CdTe buffer layers on lattice-mismatched alternative substrates such as Si, Ge, GaAs and GaSb. However, the resulting high threading dislocation (TD) density in HgCdTe/CdTe limits their ultimate application. Herein, strained CdZnTe/CdTe superlattice layers have been used as dislocation filtering layers (DFL) to reduce the TDs in CdTe buffer layers grown on GaAs (211)B substrates (14.4% lattice-mismatch) by molecular beam epitaxy (MBE). Cross-sectional microstructure characterization indicates that the DFLs suppress the propagation of TDs. For optimal Zn content combined with thermal annealing, the DFLs effectively reduce the defect density of the upper-most CdTe layer from low-107 cm−2 to the critical level of below 106 cm−2. In comparison to conventional buffer CdTe layers, the in-plane lattice of the CdTe layers in/near the DFL region is compressively strained, leading to a spread in x-ray double-crystal rocking curve full-width at half-maximum values but better in-plane lattice-matching with HgCdTe. The combined advantages of lower dislocation density and better lattice-matching with HgCdTe indicate that the DFL approach is a promising path towards achieving heteroepitaxy of high-quality HgCdTe on large-area lattice-mismatched substrates for fabricating next-generation infrared detectors.
Funder
RAC University of Western Australia
Publisher
Springer Science and Business Media LLC
Subject
Materials Chemistry,Electrical and Electronic Engineering,Condensed Matter Physics,Electronic, Optical and Magnetic Materials
Reference56 articles.
1. M. Reddy, J.M. Peterson, T. Vang, J.A. Franklin, M.F. Vilela, K. Olsson, E.A. Patten, W.A. Radford, J.W. Bangs, and L. Melkonian, J. Electron. Mater. 40, 1706 (2011). 2. M.F. Vilela, K.R. Olsson, E.M. Norton, J.M. Peterson, K. Rybnicek, D.R. Rhiger, C.W. Fulk, J.W. Bangs, D.D. Lofgreen, and S.M. Johnson, J. Electron. Mater. 42, 3231 (2013). 3. M.F. Vilela, D.D. Lofgreen, E.P.G. Smith, M.D. Newton, G.M. Venzor, J.M. Peterson, J.J. Franklin, M. Reddy, Y. Thai, E.A. Patten, S.M. Johnson, and M.Z. Tidrow, J. Electron. Mater. 37, 1465 (2008). 4. M. Carmody, A. Yulius, D. Edwall, D. Lee, E. Piquette, R. Jacobs, D. Benson, A. Stoltz, J. Markunas, and A. Almeida, J. Electron. Mater. 41, 2719 (2012). 5. W. Lei, R.J. Gu, J. Antoszewski, J. Dell, G. Neusser, M. Sieger, B. Mizaikoff, and L. Faraone, J. Electron. Mater. 44, 3180 (2015).
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|