Abstract
AbstractAn anomalous aluminum-mediated material transport process was investigated in sets of Ge-on-Si photodiodes with broadband optoelectrical characteristics measured at wavelengths from 255 nm to 1550 nm. The diodes had “PureGaB” anode regions fabricated by depositing a Ga wetting layer capped with an 11-nm-thick B-layer on 0.5 µm-thick Ge islands grown on Si. The Al metallization was able to reach the Ge-Si interface through ~ 0.1-µm-wide holes inadvertently etched along the perimeter of the Ge-islands, and then traveled along the Ge-Si interface, displacing and recrystallizing Ge and Si. The rest of the Ge surface was protected from the Al contact metallization by the B-layer. For diodes that had received the standard 400°C Al alloying step, the responsivity was near-theoretical at 406 nm and 670 nm, but, at 1310 nm and 1550 nm, the proximity of Ge-Si interfacial defects caused significant attenuation. Extra annealing at 400°C or 500°C enhanced the formation of Si pits that were filled with modified Ge crystals alloyed with Si and p-doped with Al. All these diodes maintained low dark currents, below 50 µA/cm2 at 2 V reverse bias, but the responsivity was degraded, particularly for the long wavelengths. On the other hand, neither responsivity nor degradation of current–voltage (I–V) characteristics was observed for prolonged exposure to normal operating temperatures up to 100°C. Since the direct Al contacting of the Ge sidewalls does not degrade the dark current, for large diodes it could be a low-cost method of obtaining low contact resistance to an anode with p-type sidewall passivation and high fill-factor.
Funder
Hrvatska Zaklada za Znanost
Stichting voor de Technische Wetenschappen
Publisher
Springer Science and Business Media LLC
Subject
Materials Chemistry,Electrical and Electronic Engineering,Condensed Matter Physics,Electronic, Optical and Magnetic Materials
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Broadband PureB Ge-on-Si Photodiodes;IEEE Electron Device Letters;2024-06