Electrical Conductivity Enhancement of V2O5-P2O5-Bi2O3 Glasses by Nanocrystallization

Author:

Ibrahim F. A.

Abstract

AbstractThe structural and electrical properties of the xP2O5-(40 − x) Bi2O3-60V2O5 (0 ≤ x ≤ 20) glass system have been investigated. The samples were prepared by the conventional melt-quenching technique. X-ray diffraction (XRD) patterns confirmed the amorphous nature of the present glasses. Nanocrystalline grains were found due to the annealing of the glass samples under study. Nanocrystals with an average grain size of 22 nm were implanted in the glass structure and estimated from the XRD patterns of the glass–ceramic samples. DC conductivity of the glass system has been determined in the temperature range 300–500 K. It was found that the general behavior of electrical conductivity was similar for all the glass compositions and found to decrease with increasing phosphate content. The electrical conductivity of the glass–ceramic nanocrystals obtained by annealing at crystallization temperature (Tc) was much higher than the initial glass. The activation energy (W) was enhanced by annealing and was obtained from plots of temperature-dependent DC conductivity, and found to be 0.23–0.31 eV for glasses and 0.19–0.23 eV for the glass–ceramic nanocrystals.

Publisher

Springer Science and Business Media LLC

Subject

Materials Chemistry,Electrical and Electronic Engineering,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3