Application of Bayesian Super-Resolution to Spectroscopic Data for Precise Characterization of Spectral Peak Shape

Author:

Tsujimori Kota,Hirotani Jun,Harada ShuntaORCID

Abstract

AbstractThe number of data points of digitally recorded spectra have been limited by the number of multichannel detectors employed, which sometimes impedes the precise characterization of spectral peak shape. Here we describe a methodology to increase the number of data points as well as the signal-to-noise (S/N) ratio by applying Bayesian super-resolution in the analysis of spectroscopic data. In our present method, first, the hyperparameters for the Bayesian super-resolution are determined by a virtual experiment imitating actual experimental data, and the precision of the super-resolution reconstruction is confirmed by the calculation of errors from the ideal values. For validation of the super-resolution reconstruction of spectroscopic data, we applied this method to the analysis of Raman spectra. From 200 Raman spectra of a reference Si substrate with a data interval of about 0.8 cm−1, super-resolution reconstruction with a data interval of 0.01 cm−1 was successfully achieved with the promised precision. From the super-resolution spectrum, the Raman scattering peak of the reference Si substrate was estimated as 520.55 (+0.12, −0.09) cm−1, which is comparable to the precisely determined value reported in previous works. The present methodology can be applied to various kinds of spectroscopic analysis, leading to increased precision in the analysis of spectroscopic data and the ability to detect slight differences in spectral peak positions and shapes.

Funder

Precursory Research for Embryonic Science and Technology

Publisher

Springer Science and Business Media LLC

Subject

Materials Chemistry,Electrical and Electronic Engineering,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3