The Tobin Coefficient: A Relevant Photodetector Performance Metric for IR Imaging

Author:

Gravrand OlivierORCID,Kerlain Alexandre,Sam-Giao Diane,Soria Maxence,Rothman Johan

Abstract

AbstractThe well-known Rule07 is a simple thus efficient way to compare available technologies for IR imaging detectors in terms of dark current. The noise is then often estimated using a shot noise approximation on the dark current. Both II–VI and III–V communities use this rule of thumb as a reference for well-performing IR photodiodes. For HOT applications, a dark current close to this rule07 is considered a necessary condition but not a sufficient one to obtain a high-performance IR imager. Indeed, when limited by shot noise, rule07 describes well the noise behavior of the considered device. However, when considering low-frequency noise, it fails to describe the expected performances. In this paper, we focus on another figure-of-merit, dedicated to detector low-frequency noise rather than dark current. Systemic 1/f noise investigation in an IR detector was first reported by Tobin et al. in 1980. There is today a relative consensus on the fact that measured 1/f noise is proportional to the dark current. The ratio between the amplitude of the 1/f noise and the dark current of the same devices may therefore be used as a figure-of-merit for a given technology. This ratio (called the Tobin factor $${\alpha }_{\text{T}}$$ α T ) therefore appears adequate to compare different technologies as a figure-of-merit qualifying 1/f noise properties. This dimensionless ratio can also be very useful for optimizing a particular technology or process. However, in order to be relevant, this figure-of-merit must be estimated carefully as it appears, for instance, pixel pitch-dependent. Different examples of Tobin coefficient extraction are presented in this paper. We show that, depending on the technologies, the values of the Tobin coefficient can spread over several orders of magnitude. However, only low values result in high-quality IR imagers. Today, the best results we obtained show that $${\alpha }_{\text{T}}={10}^{-5}$$ α T = 10 - 5 is a state-of-art value to be compared with.

Funder

Commissariat à l'Énergie Atomique et aux Énergies Alternatives

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3