Buffered Oxide Etch: A Safer, More Effective Etchant for Additively Manufactured Ti-Alloys

Author:

Dumbre Jayshri,Tong Zherui,Dong Dashen,Qiu Dong,Easton Mark

Abstract

AbstractKroll’s reagent is effective for the metallographic etching of traditional Ti-alloys but struggles with the intricate, refined microstructures of newer Ti-alloy compositions like Ti-Cu and Ti-Mo alloys, which are created through additive manufacturing. The presence of fine intermetallic compounds in these alloys results in limited contrast between grains and phases when using Kroll’s reagent, highlighting the need for an alternative etchant. This study systematically investigates the use of buffered oxide etch, a common etchant for micro-electronics, on a range of additively manufactured Ti-alloys. The results show that buffered oxide etch provides superior etching outcomes compared to Kroll’s reagent and ammonium bifluoride, with a clear colour contrast between grains and fine phases. Furthermore, ammonium bifluoride with an F ion concentration similar to 40% buffered oxide etch (5.60 mmol/ml) is found to reveal microstructural details effectively. These findings suggest that the buffered oxide etch is a reliable tint etchant for additively manufactured Ti-alloys, and could potentially be used to etch other additively manufactured alloy systems for metallographic studies. Both these etchants supply F ions without the low pH, significantly improving safety by removing the need for HF in the etching process.

Funder

Royal Melbourne Institute of Technology

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3