Author:
Cyganov Gleb,Rychenkov Artem,Sinitca Aleksandr,Kaplun Dmitrii
Abstract
AbstractDetection and measurement of cracks in asphalt pavement is one of the important tasks in transport industry to determine the quality of the pavement and submit repair requirements. In recent years, computer vision algorithms have been increasingly used to automate the solution of this problem. Therefore, researchers are faced with the acute issue of improving the accuracy of segmentation algorithms, since the safety of people depends on the timely detection of defects on the road. In this paper, ensemble methods based on Choquet and Sugeno fuzzy integrals are proposed to combine the scores of three pre-trained deep learning models: ResNet50, DenseNet169, and InceptionV3. We tested the proposed methods on a public dataset and compared the results with already-used popular ensemble methods.
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献