On the robustness of vision transformers for in-flight monocular depth estimation

Author:

Ercolino Simone,Devoto Alessio,Monorchio Luca,Santini Matteo,Mazzaro Silvio,Scardapane Simone

Abstract

AbstractMonocular depth estimation (MDE) has shown impressive performance recently, even in zero-shot or few-shot scenarios. In this paper, we consider the use of MDE on board low-altitude drone flights, which is required in a number of safety-critical and monitoring operations. In particular, we evaluate a state-of-the-art vision transformer (ViT) variant, pre-trained on a massive MDE dataset. We test it both in a zero-shot scenario and after fine-tuning on a dataset of flight records, and compare its performance to that of a classical fully convolutional network. In addition, we evaluate for the first time whether these models are susceptible to adversarial attacks, by optimizing a small adversarial patch that generalizes across scenarios. We investigate several variants of losses for this task, including weighted error losses in which we can customize the design of the patch to selectively decrease the performance of the model on a desired depth range. Overall, our results highlight that (a) ViTs can outperform convolutive models in this context after a proper fine-tuning, and (b) they appear to be more robust to adversarial attacks designed in the form of patches, which is a crucial property for this family of tasks.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3