Efficiency optimization methods for stochastic configuration networks

Author:

Yan Aijun,He Shixiao

Abstract

AbstractTo solve the problems of the low efficiency of parameter allocation and time-consuming computation of output weights in the hidden layers of stochastic configuration networks (SCNs), an optimization method is proposed to improve the SCNs construction efficiency. Firstly, with the increase in the number of hidden layer nodes, the key parameters that determine the strictness of the supervision mechanism are reconstructed to speed up the configuration efficiency of hidden layer input weights and biases. Then, the incremental mechanism of the SCNs are combined with the QR decomposition method, and the output weights are calculated by iteratively updating the transformation matrix, thus reducing the computational complexity of training the SCNs. Finally, the proposed method is validated on four standard datasets and historical data of a municipal solid waste incineration process. The experimental results show that the proposed method improves the efficiency of SCN construction while guaranteeing the prediction accuracy of SCNs model.

Funder

National Natural Science Foundation of China

Beijing Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3