Exact rate of accelerated propagation in the Fisher-KPP equation with nonlocal diffusion and free boundaries

Author:

Du YihongORCID,Ni Wenjie

Abstract

AbstractAccelerated propagation is a new phenomenon associated with nonlocal diffusion problems. In this paper, we determine the exact rate of accelerated propagation in the Fisher-KPP equation with nonlocal diffusion and free boundaries, where the nonlocal diffusion operator is given by $$\displaystyle \int _{\mathbb {R}}J(x-y)u(t,y)dy-u(t,x)$$ R J ( x - y ) u ( t , y ) d y - u ( t , x ) , and the kernel function J(x) behaves like a power function near infinity, namely $$\lim _{|x|\rightarrow \infty } J(x)|x|^{\alpha }=\lambda >0$$ lim | x | J ( x ) | x | α = λ > 0 for some $$\alpha \in (1,2]$$ α ( 1 , 2 ] . This is the precise range of $$\alpha $$ α where accelerated spreading can happen for such kernels. By constructing subtle upper and lower solutions, we prove that the location of the free boundaries $$x=h(t)$$ x = h ( t ) and $$x=g(t)$$ x = g ( t ) goes to infinity at exactly the following rates: $$\begin{aligned} {\left\{ \begin{array}{ll} \displaystyle \lim _{t\rightarrow \infty }\frac{h(t)}{t\ln t}=\lim _{t\rightarrow \infty }\frac{-g (t)}{t\ln t}=\mu \lambda ,&{} \hbox { when } \alpha =2,\\ \displaystyle \lim _{t\rightarrow \infty }\frac{h(t)}{ t^{1/(\alpha -1)}}= \lim _{t\rightarrow \infty }\frac{-g (t)}{ t^{1/(\alpha -1)}}=\frac{2^{2-\alpha }}{2-\alpha }\mu \lambda , &{} \hbox { when } \alpha \in (1,2). \end{array}\right. } \end{aligned}$$ lim t h ( t ) t ln t = lim t - g ( t ) t ln t = μ λ , when α = 2 , lim t h ( t ) t 1 / ( α - 1 ) = lim t - g ( t ) t 1 / ( α - 1 ) = 2 2 - α 2 - α μ λ , when α ( 1 , 2 ) . Here $$\mu >0$$ μ > 0 is a given parameter in the free boundary condition. Accelerated propagation can also happen when $$\lim _{|x|\rightarrow \infty }J(x)|x|(\ln |x|)^\beta =\lambda >0$$ lim | x | J ( x ) | x | ( ln | x | ) β = λ > 0 for some $$\beta >1$$ β > 1 . For this case, we prove that $$\begin{aligned} -g (t), h(t)=\exp \Big \{\Big [\Big (\frac{2\beta \mu \lambda }{\beta -1}\Big )^{1/\beta }+o(1)\Big ]t^{1/\beta }\Big \} \hbox { as } t\rightarrow \infty . \end{aligned}$$ - g ( t ) , h ( t ) = exp { [ ( 2 β μ λ β - 1 ) 1 / β + o ( 1 ) ] t 1 / β } as t . These results considerably sharpen the corresponding ones in [20], and the techniques developed here open the door for obtaining similar precise results for other problems. A crucial technical point is that such precise conclusions on the propagation are achievable by finding the correct improvements on the form of the lower solutions used in [20], even though the precise long-time profile of the density function u(tx) is still lacking.

Funder

Australian Research Council

Publisher

Springer Science and Business Media LLC

Subject

General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3