Abstract
AbstractWe consider the singular limit problem for the Cauchy problem of the (Patlak–) Keller–Segel system of parabolic-parabolic type. The problem is considered in the uniformly local Lebesgue spaces and the singular limit problem as the relaxation parameter $$\tau $$
τ
goes to infinity, the solution to the Keller–Segel equation converges to a solution to the drift-diffusion system in the strong uniformly local topology. For the proof, we follow the former result due to Kurokiba–Ogawa [20–22] and we establish maximal regularity for the heat equation over the uniformly local Lebesgue and Morrey spaces which are non-UMD Banach spaces and apply it for the strong convergence of the singular limit problem in the scaling critical local spaces.
Funder
Japan Society for the Promotion of Science
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献