Local connectivity of boundaries of tame Fatou components of meromorphic functions

Author:

Barański KrzysztofORCID,Fagella Núria,Jarque Xavier,Karpińska Bogusława

Abstract

AbstractWe prove the local connectivity of the boundaries of invariant simply connected attracting basins for a class of transcendental meromorphic maps. The maps within this class need not be geometrically finite or in class $${\mathcal {B}}$$ B , and the boundaries of the basins (possibly unbounded) are allowed to contain an infinite number of post-singular values, as well as the essential singularity at infinity. A basic assumption is that the unbounded parts of the basins are contained in regions which we call ‘repelling petals at infinity’, where the map exhibits a kind of ‘parabolic’ behaviour. In particular, our results apply to a wide class of Newton’s methods for transcendental entire maps. As an application, we prove the local connectivity of the Julia set of Newton’s method for $$\sin z$$ sin z , providing the first non-trivial example of a locally connected Julia set of a transcendental map outside class $${\mathcal {B}}$$ B , with an infinite number of unbounded Fatou components.

Funder

Narodowe Centrum Nauki

Agencia Estatal de Investigación

Publisher

Springer Science and Business Media LLC

Reference44 articles.

1. Alhamed, M., Rempe, L., Sixsmith, D.: Geometrically finite transcendental entire functions. J. Lond. Math. Soc. (2) 106(2), 485–527 (2022)

2. Baker, I.N.: Limit functions in wandering domains of meromorphic functions. Ann. Acad. Sci. Fenn. Math. 27(2), 499–505 (2002)

3. Baker, I.N., Domínguez, P.: Some connectedness properties of Julia sets. Complex Variables Theory Appl. 41(4), 371–389 (2000)

4. Bergweiler, W.: Iteration of meromorphic functions. Bull. Am. Math. Soc. (N.S.) 29(2), 151–188 (1993)

5. Barański, K., Fagella, N., Jarque, X., Karpińska, B.: On the connectivity of the Julia sets of meromorphic functions. Invent. Math. 198(3), 591–636 (2014)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3