Abstract
AbstractWe construct a two-parameter family of irreducible representations of $$\textrm{PSL}_2(\textbf{R})$$
PSL
2
(
R
)
in the isometry group of the infinite-dimensional complex hyperbolic space. To this end, we introduce the notion of horospherical combination of two representations. Our family then appears as horospherical combinations of two known one-parameter families.
Publisher
Springer Science and Business Media LLC
Reference18 articles.
1. Bekka, Bachir, de la Harpe, Pierre, Valette, Alain: Kazhdan’s property (T). New Mathematical Monographs, vol. 11. Cambridge University Press, Cambridge (2008)
2. Boubel, Charles, Zeghib, Abdelghani: Isometric actions of Lie subgroups of the Moebius group. Nonlinearity 17(5), 1677–1688 (2004)
3. Bridson, Martin R., Haefliger, André: Metric spaces of non-positive curvature. Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 319. Springer-Verlag, Berlin (1999)
4. Burger, Marc, Iozzi, Alessandra: Bounded cohomology and totally real subspaces in complex hyperbolic geometry. Ergodic Theory Dyn. Syst. 32(2), 467–478 (2012)
5. Burger, Marc, Iozzi, Alessandra, Monod, Nicolas: Equivariant embeddings of trees into hyperbolic spaces. Int. Math. Res. Notices 22, 1331–1369 (2005)