Abstract
AbstractLet $$( \mathcal {M},g ) $$
(
M
,
g
)
be a d-dimensional compact connected Riemannian manifold and let $$\{ \varphi _{m}\} _{m=0}^{+\infty }$$
{
φ
m
}
m
=
0
+
∞
be a complete sequence of orthonormal eigenfunctions of the Laplace–Beltrami operator on $$\mathcal {M}$$
M
. We show that there exists a positive constant C such that for all integers N and X and for all finite sequences of N points in $$\mathcal {M}$$
M
, $$\{x( j)\} _{j=1}^{N}$$
{
x
(
j
)
}
j
=
1
N
, and positive weights $$\{ a_{j}\} _{j=1}^{N}$$
{
a
j
}
j
=
1
N
we have $$\begin{aligned} \sum _{m=0}^{X}\left| \sum _{j=1}^{N}a_{j}\varphi _{m}( x( j)) \right| ^{2}\ge \max \left\{ CX\sum _{j=1}^{N}a_{j} ^{2},\left( \sum _{j=1}^{N}a_{j}\right) ^{2}\right\} . \end{aligned}$$
∑
m
=
0
X
∑
j
=
1
N
a
j
φ
m
(
x
(
j
)
)
2
≥
max
C
X
∑
j
=
1
N
a
j
2
,
∑
j
=
1
N
a
j
2
.
Funder
Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni
Publisher
Springer Science and Business Media LLC
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献