Abstract
AbstractMinimizers of functionals of the type $$\begin{aligned} w\mapsto \int _{\Omega }[|Dw|^{p}-fw]\,\textrm{d}x+\int _{{\mathbb {R}}^{n}}\int _{{\mathbb {R}}^{n}}\frac{|w(x)-w(y)|^{\gamma }}{|x-y|^{n+s\gamma }}\,\textrm{d}x\,\textrm{d}y\end{aligned}$$
w
↦
∫
Ω
[
|
D
w
|
p
-
f
w
]
d
x
+
∫
R
n
∫
R
n
|
w
(
x
)
-
w
(
y
)
|
γ
|
x
-
y
|
n
+
s
γ
d
x
d
y
with $$p, \gamma>1>s >0$$
p
,
γ
>
1
>
s
>
0
and $$p> s\gamma $$
p
>
s
γ
, are locally $$C^{1, \alpha }$$
C
1
,
α
-regular in $$\Omega $$
Ω
and globally Hölder continuous.
Publisher
Springer Science and Business Media LLC
Reference78 articles.
1. Adams, R.A., Fournier, J.F.: Sobolev Spaces. Pure and Applied Mathematics (Amsterdam), vol. 140, 2nd edn., p. xiv+305. Elsevier/Academic Press, Amsterdam (2003)
2. Avelin, B., Kuusi, T., Mingione, G.: Nonlinear Calderön–Zygmund theory in the limiting case. Arch. Ration. Mech. Anal. 227, 663–714 (2018)
3. Barles, G., Imbert, C.: Second-order elliptic integro-differential equations: viscosity solutions’ theory revisited. Ann. Inst. H. Poincé C Anal. Non Linéaire 25, 567–585 (2008)
4. Beck, L.: Boundary regularity results for weak solutions of subquadratic elliptic systems. Ph.D. Thesis, Erlangen (2008)
5. Beck, L.: Boundary regularity for elliptic problems with continuous coefficients. J. Convex Anal. 16, 287–320 (2009)
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献