An optimal insulation problem

Author:

Pietra Francesco DellaORCID,Nitsch Carlo,Trombetti Cristina

Abstract

AbstractIn this paper we consider a minimization problem which arises from thermal insulation. A compact connected set K, which represents a conductor of constant temperature, say 1, is thermally insulated by surrounding it with a layer of thermal insulator, the open set $$\Omega {\setminus } K$$ Ω \ K with $$K\subset \bar{\Omega }$$ K Ω ¯ . The heat dispersion is then obtained as $$\begin{aligned} \inf \left\{ \int _{\Omega }|\nabla \varphi |^{2}dx +\beta \int _{\partial ^{*}\Omega }\varphi ^{2}d\mathcal H^{n-1} ,\;\varphi \in H^{1}(\mathbb R^{n}), \, \varphi \ge 1\text { in } K\right\} , \end{aligned}$$ inf Ω | φ | 2 d x + β Ω φ 2 d H n - 1 , φ H 1 ( R n ) , φ 1 in K , for some positive constant $$\beta $$ β .We mostly restrict our analysis to the case of an insulating layer of constant thickness. We let the set K vary, under prescribed geometrical constraints, and we look for the best (or worst) geometry in terms of heat dispersion. We show that under perimeter constraint the disk in two dimensions is the worst one. The same is true for the ball in higher dimension but under different constraints. We finally discuss few open problems.

Funder

Università degli Studi di Napoli Federico II

Publisher

Springer Science and Business Media LLC

Subject

General Mathematics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the Optimal Shape of a Thin Insulating Layer;SIAM Journal on Mathematical Analysis;2024-05-14

2. On Laplacian eigenvalue equation with constant Neumann boundary data;Mathematische Annalen;2024-04-26

3. An isoperimetric result for an energy related to the $p$-capacity;Rendiconti Lincei, Matematica e Applicazioni;2024-01-15

4. Reverse Faber-Krahn inequality for the p-Laplacian in hyperbolic space;Journal of Mathematical Analysis and Applications;2023-11

5. Alexandrov–Fenchel inequalities for convex hypersurfaces in the half-space with capillary boundary;Mathematische Annalen;2023-02-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3