Abstract
AbstractLet $$\Omega \subset {\mathbb {R}}^n$$
Ω
⊂
R
n
be non-empty, open and proper. This paper is concerned with $$Wb_p(\Omega )$$
W
b
p
(
Ω
)
, the space of p-integrable Borel measures on $$\Omega $$
Ω
equipped with the partial transportation metric introduced by Figalli and Gigli that allows the creation and destruction of mass on $$\partial \Omega $$
∂
Ω
. Alternatively, we show that $$Wb_p(\Omega )$$
W
b
p
(
Ω
)
is isometric to a subset of Borel measures with the ordinary Wasserstein distance, on the one point completion of $$\Omega $$
Ω
equipped with the shortcut metric $$\begin{aligned} \delta (x,y)= \min \{\Vert x-y\Vert , {\text {dist}}(x,\partial \Omega )+{\text {dist}}(y,\partial \Omega )\}. \end{aligned}$$
δ
(
x
,
y
)
=
min
{
‖
x
-
y
‖
,
dist
(
x
,
∂
Ω
)
+
dist
(
y
,
∂
Ω
)
}
.
In this article we construct bi-Lipschitz embeddings of the set of unordered m-tuples in $$Wb_p(\Omega )$$
W
b
p
(
Ω
)
into Hilbert space. This generalises Almgren’s bi-Lipschitz embedding theorem to the setting of optimal partial transport.
Funder
HORIZON EUROPE European Research Council
Engineering and Physical Sciences Research Council
Publisher
Springer Science and Business Media LLC
Reference21 articles.
1. Almgren, F.J.: Almgren’s Big Regularity Paper. In: Scheffer, V., Taylor, Jean E. (eds.) $$Q$$-valued Functions Minimizing Dirichlet’s Integral and the Regularity of Area-minimizing Rectifiable Currents up to Codimension 2. Springer, New York (2000)
2. Ambrosio, L., Brué, E., Semola, D.: Lectures on Optimal Transport. Unitext, vol. 130, p. 250. Springer, Berlin (2021). https://doi.org/10.1007/978-3-030-72162-6
3. Ambrosio, L., Gigli, N., Savaré, G.: Gradient Flows in Metric Spaces and in the Space of Probability Measures, Lectures in Mathematics ETH Zürich, p. 334 (2008)
4. Andoni, A., Naor, A., Neiman, O.: Snowflake universality of Wasserstein spaces. Ann. Sci. Éc. Norm. Supér. (4) 51(3), 657–700 (2018). https://doi.org/10.24033/asens.2363
5. Baudier, F., Gartland, C., Schlumprecht, T.: $$L_1$$-distortion of Wasserstein metrics: a tale of two dimensions. Trans. Am. Math. Soc. Ser. B 10, 1077–1118 (2023). https://doi.org/10.1090/btran/143
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Metric geometry of spaces of persistence diagrams;Journal of Applied and Computational Topology;2024-09-03