Abstract
AbstractWe prove that the eigenvalues of the n-dimensional massive Dirac operator $${\mathscr {D}}_0 + V$$
D
0
+
V
, $$n\ge 2$$
n
≥
2
, perturbed by a potential V, possibly non-Hermitian, are contained in the union of two disjoint disks of the complex plane, provided V is sufficiently small with respect to the mixed norms $$L^1_{x_j} L^\infty _{{\widehat{x}}_j}$$
L
x
j
1
L
x
^
j
∞
, for $$j\in \{1,\dots ,n\}$$
j
∈
{
1
,
⋯
,
n
}
. In the massless case, we prove instead that the discrete spectrum is empty under the same smallness assumption on V, and in particular the spectrum coincides with the spectrum of the unperturbed operator: $$\sigma ({\mathscr {D}}_0+V)=\sigma ({\mathscr {D}}_0)={\mathbb {R}}$$
σ
(
D
0
+
V
)
=
σ
(
D
0
)
=
R
. The main tools used are an abstract version of the Birman–Schwinger principle, which allows in particular to control embedded eigenvalues, and suitable resolvent estimates for the Schrödinger operator.
Funder
Università degli Studi di Roma La Sapienza
Publisher
Springer Science and Business Media LLC
Reference41 articles.
1. Abramowitz, M., Stegun, I.A.: Handbook of mathematical functions with formulas, graphs, and mathematical table. In: US Department of Commerce. National Bureau of Standards Applied Mathematics series 55 (1965)
2. Abramov, A.A., Aslanyan, A., Davies, E.B.: Bounds on complex eigenvalues and resonances. J. Phys. A Math. Gen. 34(1), 57 (2001)
3. Bagarello, F., Gazeau, J.P., Szafraniec, F.H., Znojil, M. (eds.): Non-Selfadjoint Operators in Quantum Physics: Mathematical Aspects. Wiley, New York (2015)
4. Benedek, A., Panzone, R.: The space $$ L^{p} $$, with mixed norm. Duke Math. J. 28(3), 301–324 (1961)
5. Bergh, J., Löfström, J.: Interpolation Spaces: An Introduction, vol. 223. Springer, Berlin (2012)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献