Abstract
AbstractWe prove bounds in the local $$ L^2 $$
L
2
range for exotic paraproducts motivated by bilinear multipliers associated with convex sets. One result assumes an exponential boundary curve. Another one assumes a higher order lacunarity condition.
Funder
deutsche forschungsgemeinschaft
Publisher
Springer Science and Business Media LLC
Reference29 articles.
1. Bateman, M.: Kakeya sets and directional maximal operators in the plane. Duke Math. J. 147(1), 55–77 (2009)
2. Bourgain, J.: Estimations de certaines fonctions maximales. C. R. Acad. Sci. Paris Ser. I. Math. 301(10), 499–502 (1985)
3. Carbery, A.: Differentiation in lacunary directions and an extension of the Marcinkiewicz multiplier theorem. Ann. Inst. Fourier (Grenoble) 38(1), 157–168 (1988)
4. Coifman, R., Rubio de Francia, J.L., Semmes, S.: Multiplicateurs de Fourier de $$L^p({\bf R})$$ et estimations quadratiques. C. R. Acad. Sci. Paris Sér. I Math. 306(8):351–354 (1988)
5. Demeter, C., Gautam, S.Z.: Bilinear Fourier restriction theorems. J. Fourier Anal. Appl. 18(6), 1265–1290 (2012)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献