Abstract
AbstractIn the probabilistic construction of Kähler–Einstein metrics on a complex projective algebraic manifold X—involving random point processes on X—a key role is played by the partition function. In this work a new quantitative bound on the partition function is obtained. It yields, in particular, a new direct analytic proof that X admits a Kähler–Einstein metrics if it is uniformly Gibbs stable. The proof makes contact with the quantization approach to Kähler–Einstein geometry.
Funder
Knut och Alice Wallenbergs Stiftelse
Göran Gustafssons Stiftelse för Naturvetenskaplig och Medicinsk Forskning
Vetenskapsrådet
Publisher
Springer Science and Business Media LLC