Abstract
AbstractDouble Hurwitz numbers enumerate branched covers of$${{{\mathbb {C}}}}{{{\mathbb {P}}}}^1$$CP1with prescribed ramification over two points and simple ramification elsewhere. In contrast to the single case, their underlying geometry is not well understood. In previous work by the second- and third-named authors, the double Hurwitz numbers were conjectured to satisfy a polynomiality structure and to be governed by the topological recursion, analogous to existing results concerning single Hurwitz numbers. In this paper, we resolve these conjectures by a careful analysis of the semi-infinite wedge representation for double Hurwitz numbers. We prove an ELSV-like formula for double Hurwitz numbers, by deforming the Johnson–Pandharipande–Tseng formula for orbifold Hurwitz numbers and using properties of the topological recursion under variation of spectral curves. In the course of this analysis, we unveil certain vanishing properties of$$\Omega $$Ω-classes.
Funder
Australian Research Council
Max-Planck-Gesellschaft
Horizon 2020
Monash University
Australian Government
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献