Abstract
AbstractLet K be an unramified extension of $${\mathbb {Q}}_p$$Qp and $$\rho :G_K \rightarrow {\text {GL}}_n(\overline{{\mathbb {Z}}}_p)$$ρ:GK→GLn(Z¯p) a crystalline representation. If the Hodge–Tate weights of $$\rho $$ρ differ by at most p then we show that these weights are contained in a natural collection of weights depending only on the restriction to inertia of $${\overline{\rho }} = \rho \otimes _{\overline{{\mathbb {Z}}}_p} \overline{{\mathbb {F}}}_p$$ρ¯=ρ⊗Z¯pF¯p. Our methods involve the study of a full subcategory of p-torsion Breuil–Kisin modules which we view as extending Fontaine–Laffaille theory to filtrations of length p.
Funder
Engineering and Physical Sciences Research Council
Max-Planck-Institut für Mathematik in den Naturwissenschaften
Publisher
Springer Science and Business Media LLC
Reference14 articles.
1. Barnet-Lamb, T., Gee, T., Geraghty, D.: Serre weights for $$U(n)$$. J. Reine Angew. Math. 735, 199–224 (2018)
2. Barnet-Lamb, T., Gee, T., Geraghty, D., Taylor, R.: Potential automorphy and change of weight. Ann. Math. (2) 179(2), 501–609 (2014)
3. Berger, L.: La correspondance de Langlands locale $$p$$-adique pour $${\rm GL}_2({\bf Q}_p)$$, Astérisque, 339, Exp. No. 1017, viii, 157–180 (2011). (French, with French summary), Séminaire Bourbaki. Vol. 2009/2010. Exposés 1012–1026
4. Bhatt, B., Morrow, M., Scholze, P.: Integral $$p$$-adic Hodge theory. Preprint, arXiv:1602.03148 (2016)
5. Chenevier, G., Harris, M.: Construction of automorphic Galois representations. II. Camb. J. Math. 1(1), 53–73 (2013)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献