Publisher
Springer Science and Business Media LLC
Reference27 articles.
1. Atiyah, M., Bott, R.: The Yang-Mills equations over Riemann surfaces. Phil. Trans. Roy. Soc. London A 308, 524?615 (1982)
2. Bando, S., Siu, Y.T.: Stable sheaves and Einstein-Hermitian metrics. In: Geometry and Analysis on Complex Manifolds, World Sci. Publishing, River Edge, NJ, 1994, pp. 39?50
3. Chang, K.-C., Ding, W.-Y., Ye, R.: Finite-time blow up of the heat flow of harmonic maps from surfaces. J. Diff. Geom. 36, 507?515 (1992)
4. Chen, Y., Shen, C.-L.: Monotonicity formula and small action regularity for Yang-Mills flows in higher dimensions. Calc. Var. PDEs 2, 389?403 (1994)
5. Chen, Y., Struwe, M.: Existence and partial regularity results for the heat flow for harmonic maps. Math. Z. 201, 83?103 (1989)
Cited by
45 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. On Vafa–Witten equations over Kähler manifolds;Journal für die reine und angewandte Mathematik (Crelles Journal);2024-07-26
2. The limit of the Yang–Mills–Higgs flow for twisted Higgs pairs;International Journal of Geometric Methods in Modern Physics;2023-11-16
3. Uhlenbeck compactness for Yang–Mills flow in higher dimensions;Calculus of Variations and Partial Differential Equations;2023-05-31
4. Stability and energy identity for Yang–Mills–Higgs pairs;Journal of Mathematical Physics;2023-02-01
5. The non-abelian Hodge correspondence on some non-Kähler manifolds;Science China Mathematics;2022-12-16