The Griffiths bundle is generated by groups

Author:

Goldring Wushi

Abstract

Abstract First the Griffiths line bundle of a $$\mathbf {Q}$$ Q -VHS $${\mathscr {V}}$$ V is generalized to a Griffiths character $${{\,\mathrm{grif}\,}}(\mathbf {G}, \mu ,r)$$ grif ( G , μ , r ) associated to any triple $$(\mathbf {G}, \mu , r)$$ ( G , μ , r ) , where $$\mathbf {G}$$ G is a connected reductive group over an arbitrary field F, $$\mu \in X_*(\mathbf {G})$$ μ X ( G ) is a cocharacter (over $$\overline{F}$$ F ¯ ) and $$r:\mathbf {G}\rightarrow GL(V)$$ r : G G L ( V ) is an F-representation; the classical bundle studied by Griffiths is recovered by taking $$F=\mathbf {Q}$$ F = Q , $$\mathbf {G}$$ G the Mumford–Tate group of $${\mathscr {V}}$$ V , $$r:\mathbf {G}\rightarrow GL(V)$$ r : G G L ( V ) the tautological representation afforded by a very general fiber and pulling back along the period map the line bundle associated to $${{\,\mathrm{grif}\,}}(\mathbf {G}, \mu , r)$$ grif ( G , μ , r ) . The more general setting also gives rise to the Griffiths bundle in the analogous situation in characteristic p given by a scheme mapping to a stack of $$\mathbf {G}$$ G -Zips. When $$\mathbf {G}$$ G is F-simple, we show that, up to positive multiples, the Griffiths character $${{\,\mathrm{grif}\,}}(\mathbf {G},\mu ,r)$$ grif ( G , μ , r ) (and thus also the Griffiths line bundle) is essentially independent of r with central kernel, and up to some identifications is given explicitly by $$-\mu $$ - μ . As an application, we show that the Griffiths line bundle of a projective $${{\mathbf {G}{\text{- }}{} \mathtt{Zip}}}^{\mu }$$ G - Zip μ -scheme is nef.

Funder

Royal Swedish Academy of Sciences

Knut och Alice Wallenbergs Stiftelse

Publisher

Springer Science and Business Media LLC

Subject

General Mathematics

Reference23 articles.

1. Bakker, B., Brunebarbe, Y., Tsimerman, J.: $$o$$-minimal GAGA and a conjecture of Griffiths. Preprint, arXiv:1811.12230

2. Bourbaki, N.: Groupes et algèbres de Lie. Chapters 4–6. Hermann, Paris (1968)

3. Brunebarbe, Y., Goldring, W., Koskivirta, J.S., Stroh, B.: Ample automorphic bundles on zip-schemes. (in preparation)

4. Carlson, J., Müller-Stach, S., Peters, C.: Period Mappings and Period Domains Volume 168 of Cambridge Studies in Advanced Mathematics, 2nd edn. Cambridge University Press, Cambridge (2017)

5. Conrad, B.: Reductive group schemes. In: Brochard, S., Conrad, B., Oesterlé, J. (eds) Autour des schémas en groupes. Vol. I, volume 42/43 of Panor. Synthèses, pages 93–444. Soc. Math. France, Paris, (2014). A celebration of SGA3, Lecture notes from the Summer School held at the Centre International de Rencontres Mathématiques (CIRM), Luminy, August 29–September 9, (2011)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3