Abstract
AbstractWe show that distinct primitive L-functions can achieve extreme values simultaneously on the critical line. Our proof uses a modification of the resonance method and can be applied to establish simultaneous extreme central values of L-functions in families.
Funder
NTNU Norwegian University of Science and Technology
Publisher
Springer Science and Business Media LLC
Reference48 articles.
1. Aistleitner, C.: Pańkowski, Ł: Large values of $$L$$-functions from the Selberg class. J. Math. Anal. Appl. 446, 345–364 (2017)
2. Andersen, N., Thorner, J.: Zeros of $$GL_2$$$$L$$-functions on the critical line. Forum Math. 3(2), 477–491 (2021)
3. Bernard, D.: Modular case of Levinson’s theorem. Acta Arith. 167(3), 201–237 (2015)
4. Bettin, S., Bui, H.M., Li, X., Radziwiłł, M.: A quadratic divisor problem and moments of the Riemann zeta-function. Preprint. Available at arXiv:1609.02539
5. Blomer, V., Fouvry, E., Kowalski, E., Michel, P., Milićević, D., Sawin, W.: The second moment theory of families of $$L$$-functions, Mem. AMS 282 no.1394 (2023)